Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom.

نویسندگان

  • J Feng
  • K Liu
  • M Graf
  • M Lihter
  • R D Bulushev
  • D Dumcenco
  • D T L Alexander
  • D Krasnozhon
  • T Vuletic
  • A Kis
  • A Radenovic
چکیده

Ultrathin nanopore membranes based on 2D materials have demonstrated ultimate resolution toward DNA sequencing. Among them, molybdenum disulfide (MoS2) shows long-term stability as well as superior sensitivity enabling high throughput performance. The traditional method of fabricating nanopores with nanometer precision is based on the use of focused electron beams in transmission electron microscope (TEM). This nanopore fabrication process is time-consuming, expensive, not scalable, and hard to control below 1 nm. Here, we exploited the electrochemical activity of MoS2 and developed a convenient and scalable method to controllably make nanopores in single-layer MoS2 with subnanometer precision using electrochemical reaction (ECR). The electrochemical reaction on the surface of single-layer MoS2 is initiated at the location of defects or single atom vacancy, followed by the successive removals of individual atoms or unit cells from single-layer MoS2 lattice and finally formation of a nanopore. Step-like features in the ionic current through the growing nanopore provide direct feedback on the nanopore size inferred from a widely used conductance vs pore size model. Furthermore, DNA translocations can be detected in situ when as-fabricated MoS2 nanopores are used. The atomic resolution and accessibility of this approach paves the way for mass production of nanopores in 2D membranes for potential solid-state nanopore sequencing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Structure and Dynamics of Single Platinum Atom Interactions with Monolayer MoS2.

We have studied atomic level interactions between single Pt atoms and the surface of monolayer MoS2 using aberration-corrected annular dark field scanning transmission electron microscopy at an accelerating voltage of 60 kV. Strong contrast from single Pt atoms on the atomically resolved monolayer MoS2 lattice enables their exact position to be determined with respect to the MoS2 lattice, revea...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Electrochemical Surface Interrogation of a MoS2 Hydrogen-Evolving Catalyst: In Situ Determination of the Surface Hydride Coverage and the Hydrogen Evolution Kinetics.

The hydrogen evolution reaction (HER) on an electrodeposited a-MoS2 electrode was investigated by a surface-selective electrochemical titration technique by application of surface interrogation scanning electrochemical microscopy. In a mildly acidic (pH 4.6) environment, the saturated surface hydride coverage of MoS2 was determined to be 31%, much higher than that expected for a crystalline nan...

متن کامل

Noble Metal/W(111) Single-Atom Tips and Their Field Electron and Ion Emission Characteristics

We have developed a simple, reliable and reproducible method for preparing single-atom tips. With electrochemical techniques, a very small amount of a noble metal is plated on the surface of a clean Wh111i tip. Upon annealing the tip at an appropriate temperature in vacuum, a three-sided {211} pyramid with a single-atom sharpness is formed spontaneously at the tip apex by adsorbate-induced face...

متن کامل

Fabrication of single-layer MS2 (M=Mo, W) nanosheets using Li battery setup

Lithium intercalation is a convenient method to prepare few-layer and single-layer MS2 (M=Mo, W) nanosheets. This method is, however, very time-consuming (few days) and it is difficult to control the reaction parameters. To overcome these drawbacks, we have proposed a method to use an Li battery set-up to significantly reduce the reaction time (few hours) and electrochemically intercalate lithi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 2015